N,C-Cross-coupling of trimethylsilyl derivatives of azoles with *N*,*N*-bis(silvloxy)enamines

Igor V. Bliznets,^a Alexey V. Lesiv,^b Lyudmila M. Makarenkova,^c Yuri A. Strelenko,^c Sema L. Ioffe*c and Vladimir A. Tartakovskii^c

^a Higher Chemical College, Russian Academy of Sciences, 125047 Moscow, Russian Federation. Fax: +7 095 135 8860

^b Moscow Chemical Lyceum, 109033 Moscow, Russian Federation. Fax: +7 095 362 3440

^c N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow, Russian Federation. Fax: +7 095 135 5328

10.1070/MC2000v010n04ABEH001293

N-Trimethylsilyl derivatives of di- and triazoles smoothly undergo N,C-cross-coupling reactions with terminal and internal N,N-bis(silyloxy)enamines to give α -azolyl-substituted oximes.

Bis(trialkylsilyloxy)enamines¹ (BSENA) are convenient reagents for organic synthesis.2

BSENA, as formal β -carbon electrophiles, smoothly undergo C,C-cross-coupling reactions with α-nitro carbanions³ or trimethylsilyl derivatives of aliphatic nitro compounds.⁴ They also enter into N,C-cross-coupling with trimethylsilyl derivatives of N-nitramines⁵ and primary⁶ or secondary¹ amines. The main products of these processes are α-substituted oximes, and the main side reaction is the rearrangement of BSENA into trimethylsilyl derivatives of 2-trimethylsilyloxy-substituted oximes, which is catalysed by Lewis or Brönsted acids^{1,7} and amines.⁶

It was found³ that at least some of the above reactions can proceed via α-nitroso alkenes as key intermediates. It is interesting that N,C-cross-coupling reactions of BSENA with alkyl-Nnitroamines, which are N-H acids, can be performed using trimethylsilyl derivatives of N-nitramines; however, N-trimethylsilyl derivatives of amines do not react with BSENA. Therefore, it is very interesting to examine the N,C-cross-coupling reaction of azoles with BSENA since the N-H acidity of azoles and N-nitroamines is almost the same,8 whereas the basicity of azoles is close to that of amines.9

We found that trimethylsilyl derivatives of azoles 1 containing at least two nitrogen atoms react smoothly with model terminal and internal BSENA 2[†] without a solvent at room temperature to give derivatives of oximes 3,‡ which could be transformed into free α -azolyl-substituted oximes 4^{\S} after alcoholysis (Scheme 1).

The target products can be purified by fractionation in vacuo (for 3) and by crystallization (for 4). The reactions between 1 and 2 afforded derivatives 3 in good yields only when BSENA

† A solution of BSENA 2 (1 mmol) in dry hexane (3 ml) was added dropwise to the TMS derivative of azole 1 (1 mmol) at 20 °C in an inert atmosphere. The mixture was stirred at 20 °C for 30 min, evaporated at 20 °C (10 Torr), then stirred for 24 h. Finally, the residue was dried in vacuo at 20 °C (0.1 Torr) to constant weight. Target derivative 3 was isolated by distillation of the residue in vacuo.

NMR spectra were recorded on a Bruker AM 300 spectrometer at 300.31 MHz and 75.47 MHz for ¹H and ¹³C, respectively; TMS as an internal standard.

3a: yield 95%, bp 53 °C (0.06 Torr). ¹H NMR (CDCl₃) δ : 0.19 (s, 9H, SiMe₃), 1.57 (s, 3H, Me), 4.80 (s, 2H, CH₂), 6.25 (t, 1H, 4-H, $^3J_{\rm H,H}$ 2 Hz), 7.33 and 7.47 (d, 2H, 3-H and 5-H, $^3J_{\rm H,H}$ 2 Hz). $^{13}{\rm C}$ NMR (CDCl₃) δ : -0.75 (SiMe₃), 11.91 (Me), 55.89 (CH₂), 106.38 (4-C), 128.99 and 139.44 (3-C and 5-C), 157.44 (C=N).

3b: yield 78%, bp 44 °C (0.08 Torr).

3c: yield 88%, bp 65 °C (0.08 Torr).

3d: yield 97%, bp 73 °C (0.09 Torr). $E/Z \approx 6:1.$ ¹H NMR (CDCl₃) δ : (*E*)-isomer: 0.20 (s, 9H, SiMe₃), 1.65 (d, 3H, Me, ${}^3J_{\rm H,H}$ 7 Hz), 4.90 (m, 1H, CH, ${}^3J_{\rm H,H}$ 7 Hz), 6.90 and 7.05 (br. s, 2H, 4-H and 5-H), 7.51 (d, 1H, CH=N, ${}^{3}J_{H,H}$ 7 Hz), 7.67 (s, 1H, 2-H); (Z)-isomer: 0.19 (s, 9H, SiMe₃), 1.63 (d, 3H, Me, ${}^{3}J_{H,H}$ 7 Hz), 5.50 (m, 1H, CH, ${}^{3}J_{H,H}$ 7 Hz), 6.90 and 7.05 (br. s, 2H, 4-H and 5-H), 7.43 (d, 1H, CH=N, ³J_{HH}, 7 Hz), 7.67 (s, 1H, 2-H). 13 C NMR (CDCl₃) δ : (*E*)-isomer: -0.90 (SiMe₃), 19.00 (Me), 52.31 (CH), 117.14 and 129.76 (4-C and 5-C), 135.55 (2-C), 153.18 (C=N); (Z)-isomer: -0.90 (SiMe₃), 18.00 (Me), 47.63 (CH), 117.30 and 129.76 (4-C and 5-C), 135.55 (2-C), 153.91 (C=N).

3e: yield ~100%, bp 60 °C (0.08 Torr).

3d: yield 95%, bp 64 °C (0.08 Torr).

Scheme 1 Reagents and conditions: i, molar ratio 1:2 = 1:1, without a solvent, room temperature, 24 h; ii, an excess of EtOH, room temperature, 20 h.

were dried by azeotropic evaporation of water with benzene followed by distillation before the N,C-cross-coupling reaction.

The structure of compounds 3 and 4 was confirmed by ¹H and ¹³C NMR data and additionally by elemental analysis for oximes 4 (the error was no higher than 0.19% for carbon or 0.35% for hydrogen). The (E)-configuration of an oximino fragment for oximes 4a,c,e and their derivatives 3a,c,e was found using the published rules.3,5,6 Oximes 4b,d,f and their derivatives $\mathbf{3b}$, \mathbf{d} , \mathbf{f} represent mixtures of (Z)- and (E)-isomers.

The reactions of 1,2,4-triazole 1c with BSENA 2 are not regioselective (Scheme 2).

However, only pure 1-substituted triazoles 3e,f and 4e,f were isolated from the reaction mixture by distillation in vacuo or by crystallization.

4b: yield ~100%, oil. $E/Z \approx 5:2$. ¹H NMR (CDCl₃) δ : (E)-isomer: 1.65 (d, 3H, Me, ${}^3J_{\rm H,H}$ 6.6 Hz), 5.10 (m, 1H, CH, ${}^3J_{\rm H,H}$ 6.6 Hz), 6.24 (d, 1H, 4-H, ${}^3J_{\rm H,H}$ 2 Hz), 7.42 and 7.53 (d, 2H, 3-H and 5-H, ${}^3J_{\rm H,H}$ 2 Hz), 7.58 (d, 1H, CH=N, ${}^{3}J_{H,H}$ 6.6 Hz), 9.36 (br. s, 1H, OH); (Z)-isomer: 1.66 (d, 3H, Me, ${}^{3}J_{\rm H,H}$ 6.6 Hz), 5.72 (m, 1H, CH, ${}^{3}J_{\rm H,H}$ 6.6 Hz), 6.24 (d, 1H, 4-H, ${}^{3}J_{\rm H,H}$ 2 Hz), 6.95 (d, 1H, CH=N, ${}^{3}J_{\rm H,H}$ 6.6 Hz), 7.45 and 7.55 (d, 2H, 3-H, 5-H, ${}^{3}J_{\rm H,H}$ 2 Hz), 36 (br. s, 1H, OH). ${}^{13}{\rm C}$ NMR (CDCl₃) δ : (E)-isomer: 18.54 (Me), 56.71 (CH), 105.95 (4-C), 128.00 and 139.59 (3-C and 5-C), 149.58 (C=N); (Z)-isomer: 17.69 (Me); 52.15 (CH); 105.59 (4-C), 128.57 and 139.83 (3-C and 5-C), 150.30 (C=N).

4c: yield ~100%, mp 162–167 °C (from H₂O). ¹H NMR ([²H₆]DMSO) δ: 1.63 (s, 3H, Me), 4.66 (s, 2H, CH₂), 6.88 and 7.08 (br. s, 2H, 4-H and 5-H), 7.61 (s, 1H, 2-H), 10.92 (s, 1H, OH). ¹³C NMR ([2 H₆]DMSO) δ : 11.37 (Me), 49.87 (CH₂), 119.56 and 128.55 (4-C and 5-C), 137.64 (2-C), 151.58 (C=N).

4d: yield 95%, mp 109-112 °C (from H₂O).

4e: yield ~100%, mp 149–151 °C (from EtOH).

4f: yield ~100%, mp 109–113 °C (from H₂O).

¶ A mixture of two regio isomers (see Scheme 2).

[§] **4a**: yield 91%, mp 94–95 °C (from H₂O).

Scheme 2 Reagents and conditions: i, molar ratio 1:2 = 1:1, without a solvent, room temperature, 20 h.

Molar ratio 3e:3e' ~ 6:1; 3f:3f' ~ 2:1

The interaction of BSENA with free azoles was studied using a model reaction of enamine 2a with pyrazole. This process is not chemoselective and includes a rearrangement of 2a into $5^{\dagger\dagger}$ catalysed by pyrazole (Scheme 3).

Scheme 3 Reagents and conditions: i, molar ratio pyrazole: 2a = 1:1, without a solvent, room temperature, 20 h.

We can conclude that the reactivity of azoles in the N,C-cross-coupling reactions with BSENA is similar to the reactivity of *N*-nitramines in analogous reactions.⁵

Thus, a convenient preparative method for synthesis of 2-azolyl-substituted oximes from available aliphatic nitro compounds and azoles was developed. Oximes **4** are promising synthetic building blocks for drug and plant protection research.^{10,11}

This work was performed at the Scientific Educational Centre for Young Scientists and supported by the Russian Foundation for Basic Research (grant nos. 99-03-32015 and 00-15-97455) and by the Federal Programme 'Integration' (grant no. A0082).

References

- 1 H. Feger and G. Simchen, Liebigs Ann. Chem., 1986, 1456.
- 2 A. D. Dilman, A. A. Tishkov, I. M. Lyapkalo, S. L. Ioffe, Yu. A. Strelenko and V. A. Tartakovsky, *Synthesis*, 1998, 181.
- 3 A. D. Dilman, I. M. Lyapkalo, S. L. Ioffe, Yu. A. Strelenko and V. A. Tartakovsky, *Synthesis*, 1999, 1767.
- 4 A. D. Dilman, I. M. Lyapkalo, Yu. A. Strelenko, S. L. Ioffe and V. A. Tartakovskii, *Mendeleev Commun.*, 1997, 133.
- 5 S. L. Ioffe, L. M. Makarenkova, Yu. A. Strelenko, I. V. Bliznets and V. A. Tartakovsky, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 2045 (*Russ. Chem. Bull.*, 1998, 47, 1989).
- 6 L. M. Makarenkova, I. V. Bliznets, S. L. Ioffe, Yu. A. Strelenko and V. A. Tartakovsky, *Izv. Akad. Nauk, Ser. Khim.*, 2000, 1265 (in Russian).
- 7 H. Feger and G. Simchen, Liebigs Ann. Chem., 1986, 428.
- 8 H. Feuer, The Chemistry of the Nitro and Nitroso Groups, New York, 1969, vol. 1, p. 470.
- 9 T. L. Gilchrist and W. Stretch, J. Chem. Soc., Perkin Trans. 1, 1987, 2235.
- 10 J. G. Keay, E. F. V. Scriven and N. Shobana, *Heterocycles*, 1994, 37, 1951.
- 11 T. L. Gilchrist, D. A. Lingham and T. G. Roberts, J. Chem. Soc., Chem. Commun., 1979, 1089.

Received: 1st March 2000; Com. 00/1619

^{†† 5:} $E/Z \approx 4:1$ (ref. 7). 13 C NMR (CDCl₃) δ : (E)-isomer: -0.68 and -0.45 (2SiMe₃), 11.54 (Me), 64.86 (CH₂), 160.82 (C=N); (Z)-isomer: -0.45 and -0.17 (2SiMe₃), 16.50 (Me), 58.72 (CH₂), 163.4 (C=N).